转载与模板 – Bron-Kerboscht 极大团算法
Algorithm 457: Finding All Cliques of an Undirected Graph [H] – Coen Bron* and Joep Kerboscht – Archives of Communication of ACM
原Essay详细而准确地描述了该算法的过程,不需要额外的注解也能轻松理解。若英语阅读吃力,也有一份不错的中文详述:
极大团(maximal clique)算法:Bron-Kerbosch算法 – Bowiee – 简书
下面给出一份参考实现,能够找出所有极大团。使用unsigned long long
存储各状态点的集合,二进制表示下从低到高第位为表示点存在于集合中。
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
#include <bits/stdc++.h> using namespace std; typedef unsigned long long ull; constexpr int N = 60; ull e[N]; int n, m, x, y, mxsiz; vector <ull> max_clique; #define lowbit(x) (x & -x) #define popc(x) (__builtin_popcountll (x)) #define log2s(x) (__builtin_ctzll (x)) void Bron_Kerbosch (ull cli /* 团 */, ull can /* 候选节点 */, ull ban /* 禁选节点 */) { if (!can && !ban) { max_clique.push_back (cli); mxsiz = max (mxsiz, popc (cli)); return; } // 准备下一层搜索的各项参数。 ull _cli, _can = can | ban, _ban, l; int x, pivot, mxnei = -1, tmp; // 在ban和can集合中,选择合法邻居最多的一个节点作为基准点。 while (_can) { x = log2s (l = lowbit (_can)) + 1; tmp = popc (can & e[x]); if (tmp > mxnei) mxnei = tmp, pivot = x; _can ^= l; } l = 1ull<<pivot - 1; // 若该节点来自can,先行搜索。 if (can & l) Bron_Kerbosch (cli | l, can & e[pivot], ban & e[pivot]), can ^= l; while (can) { x = log2s (l = lowbit (can)) + 1; if (l & e[pivot]) { can ^= l; continue; } _can = can & e[x]; _cli = cli | l, _ban = ban & e[x]; Bron_Kerbosch (_cli, _can, _ban); ban |= l, can ^= l; } } int main () { scanf ("%d%d", &n, &m); for (int i = 1; i <= m; ++i) scanf ("%d%d", &x, &y), e[x] |= 1ull<<y - 1, e[y] |= 1ull<<x - 1; Bron_Kerbosch (0, (1ull<<n) - 1, 0); // 对max_clique作统计。 // ... return 0; }