数学期望

签到题看了半个小时;T2 没有考虑到只需要包含最优解即可,非要确定另一多余状态,只拿了部分分。

T3 只会考虑 “x,yx, y 的公共祖先中含有 ll 的概率”,不会高效计算“当二者的 lca\operatorname{lca} 恰为 ll 时”的期望/概率与总长之和的乘积,仍然只有暴力分。

T4 无思路。

一句话(?)题解

A – 签到题

可以简单用归纳法证明,仅有所有管道中通行时间最大的会阻塞进度,是为两数据包到达终点的时间间隔。算出首个数据包到达的时间再将前者相加即可。

B – 简单题

第一反应是类似笛卡尔树一样,在区间上依次合并区域最大值并计算贡献。n300n \leq 300 似乎也在暗示这是一个区间 DP。

48 pts\text{48 pts} 做法

f(l,r,mx)f(l,r,\text{mx}) 表示“考虑完成区间 [l,r][l,r] 内所有贡献,且最大值恰好为 mx\text{mx}”的最大权值和。转移时从小到大枚举最大值 mx=Vi,j\text{mx}=V_{i,j},枚举包含它的区间,尝试转移 f(l,r,mx)f(l,i1,mx’)Ci,j+mxcalc(l,r,i)+f(i+1,r,mx”)f(l,r,\text{mx})\leftarrow f(l,i-1,\text{mx}’)-C_{i,j}+\text{mx}\cdot \operatorname{calc}(l,r,i)+f(i+1,r,\text{mx}”),其中 calc(l,r,i)\operatorname{calc}(l,r,i) 计算 l=lir=irQl,r\sum_{l’=l}^{i}\sum_{r’=i}^{r}Q_{l’,r’},可以由二维前缀和实现。稍加演算会发现,这样转移不会重复计算贡献。时间复杂度 O(KiN2)\operatorname{O}(\sum K_{i}N^2)(更多…)

More
  • 2022年10月19日

策略和思维活跃度都极其糟糕的一个上午。

那么“在能力不足以保证完成更多正解”的情况下获取尽可能多的暴力分从而提高总分下限,又被重新提上议程。切记切记。

思维广度待进一步提升。

一句话题解

A – 道路

发现了是平面图,想到了数据结构与区间可达性,就是没把俩概念结合起来。

由题目保证的“两边不交”性质,可以发现,若不考虑无法从任何一个左侧点到达的右侧点,如有 (A,y1),(A,y2),y1<y2(A,y_1),(A,y_2),y_1<y_2 均可从 (0,y0)(0,y_0) 达,则若有 (A,y3),y3[y1,y2](A,y_3),y_3\in [y_1,y_2],则其必然亦可达。

缩点后拓扑排序求出每个连通块能到达的右侧点 yy 坐标区间即可。复杂度 (O)(nlogn+m)\operatorname(O)(n\log n+m)

B – 地震后的H市

联想到了 HDU “杭电杯”超级联赛(3) Spanning Tree Game 钦定最小生成树,按边权从小到大依次加边的动规方法。

可惜这是最小瓶颈生成树。

解一(刘晟林)

(更多…)

More
  • 2022年10月6日

一场相当有收获的比赛。比赛链接

A – 石老板举世无双

解法一

尝试观察规律。我们发现,在完成ss次操作以后,左端点的可能取值为xa+(2sx)b2s,x[1,2s]\dfrac{xa+(2^s-x)b}{2^s}, x \in [1, 2^s],右端点的可能取值为xa+(2sx)b2s,x[0,2s)\dfrac{xa+(2^s-x)b}{2^s}, x \in [0, 2^s)。假如现在我们达到最终状态,其l=(x+1)a+(2sx1)b2s,r=xa+(2sx)b2sl=\dfrac{(x+1)a+(2^s-x-1)b}{2^s}, r=\dfrac{xa+(2^s-x)b}{2^s}。那么,在xx的二进制表示中,如果从高到底pos\mathrm{pos}位为11,则在第pos\mathrm{pos}轮中,有check (mid) == 0,向右区间递归;否则向左区间递归。这是很容易解释的:若向右递归,则右端点不变。而在下一层,右端点表示中a,ba, b的所有系数乘22,所以体现为二进制位末尾添一个00。反之,就变成(x+(x+1))/2(x+(x+1))/2,在下一层中体现为2x+12x+1。如果其有popc(x)\operatorname{popc}(x)位为11,则到达该状态的概率为p0popc(x)p1spopc(x)p_0^{\operatorname{popc}(x)}p_1^{s-\operatorname{popc}(x)}

s=3s=3时的状态l=3a+5b8,r=2a+6b8l=\dfrac{3a+5b}{8}, r=\dfrac{2a+6b}{8}为例。22的三位二进制表示为0b010\text{0b010},则推断出在前三轮分别向右、左、右区间递归,到达其的概率为p0p12p_0p_1^2(更多…)

More
  • 2022年5月17日

说来惭愧。从国庆到现在,至少有3个人试图把我讲懂期望,但我还是只明白最基本的定义,根本不会做题。

今天发现一篇入门级别的数学期望讲解,在此转载。

More
  • 2021年11月19日