多项式

本文将简单推导两种方式进行的离散傅里叶变换,用另种视角解释并优化算法。参考了 Seniorious yhx-12243 的 NTT 到底写了些什么(详细揭秘) 一文、OI Wiki 快速傅里叶变换 条目 和 rushcheyo 转置原理及其应用 讲稿。

离散傅里叶变换

我们计算数列 {an}\{a_n\} 的离散傅里叶变换 DFT(a,n)k=j=0n1aje2πinkj \newcommand\DFT{\operatorname{DFT}}\DFT(a,n)_k=\sum_{j=0}^{n-1}a_j\mathrm{e}^{\frac{-2\pi\mathrm{i}}{n}kj}

卷积定理循环卷积得到,我们对同样长为 nn 的数列 {bn}\{b_n\}DFT\DFT,并令数列 ck=DFT(a,n)kDFT(b,n)kc_k=\DFT(a,n)_k\DFT(b,n)_k,则有 IDFT(c,n)k=j+qk(modn)ajbq \newcommand\IDFT{\operatorname{IDFT}}\IDFT(c,n)_k=\sum_{j+q\equiv k\pmod n}a_jb_q

于是我们可以利用该原理实现常规意义下的数列卷积:有长为 nn 的数列 {an}\{a_n\},长 mm 的数列 {bm}\{b_m\},则将 a,ba,b 高位补 00,分别作 n+m1n+m-1 位的 DFT\DFT,点值相乘后 IDFT\IDFT 即可得到 ck=i+jk(modn+m1)aibj=i+j=k0i<n0j<maibjc_k=\sum_{i+j\equiv k\pmod{n+m-1}}a_ib_j=\sum_{\substack{i+j=k\\0\leq i<n\\0\leq j<m}}a_ib_j

为行文方便,下文采用 DFT(a,n)k=i=0n1aiωnik\DFT(a,n)_k=\sum_{i=0}^{n-1}a_i\omega_n^{ik} 的定义,其中 ωn=exp(2πi/n)\omega_n=\exp(2\pi\mathrm{i}/n),即 nn 阶单位根。 (更多…)

More
  • 2023年2月23日