数学

AtCoder Regular Contest 148 D – mod M Game

鲁莽的尝试?

一个非常显然的 Bob 的必胜局面是:对于任意 x{0,1,,M1}x\in \{0,1,\cdots,M-1\},在这 2N2N 个数中的出现次数均为偶数。由此 Bob 可以选择与 Alice 上一轮选的相同的数而获胜。

那……其他局面就一定是 Alice 必胜么?

我们只依靠该结论交一份代码。不出意料,没有通过。不过它只错了两成的测点!看来大体方向是正确的。

正解

(更多…)

More
  • 2022年9月12日

一场相当有收获的比赛。比赛链接

A – 石老板举世无双

解法一

尝试观察规律。我们发现,在完成ss次操作以后,左端点的可能取值为xa+(2sx)b2s,x[1,2s]\dfrac{xa+(2^s-x)b}{2^s}, x \in [1, 2^s],右端点的可能取值为xa+(2sx)b2s,x[0,2s)\dfrac{xa+(2^s-x)b}{2^s}, x \in [0, 2^s)。假如现在我们达到最终状态,其l=(x+1)a+(2sx1)b2s,r=xa+(2sx)b2sl=\dfrac{(x+1)a+(2^s-x-1)b}{2^s}, r=\dfrac{xa+(2^s-x)b}{2^s}。那么,在xx的二进制表示中,如果从高到底pos\mathrm{pos}位为11,则在第pos\mathrm{pos}轮中,有check (mid) == 0,向右区间递归;否则向左区间递归。这是很容易解释的:若向右递归,则右端点不变。而在下一层,右端点表示中a,ba, b的所有系数乘22,所以体现为二进制位末尾添一个00。反之,就变成(x+(x+1))/2(x+(x+1))/2,在下一层中体现为2x+12x+1。如果其有popc(x)\operatorname{popc}(x)位为11,则到达该状态的概率为p0popc(x)p1spopc(x)p_0^{\operatorname{popc}(x)}p_1^{s-\operatorname{popc}(x)}

s=3s=3时的状态l=3a+5b8,r=2a+6b8l=\dfrac{3a+5b}{8}, r=\dfrac{2a+6b}{8}为例。22的三位二进制表示为0b010\text{0b010},则推断出在前三轮分别向右、左、右区间递归,到达其的概率为p0p12p_0p_1^2(更多…)

More
  • 2022年5月17日

考虑这个排列是怎样生成的。转述一下题意,可以发现,popcount(PiPi+1mod2n)=K\operatorname{popcount}(P_i \oplus P_{i+1 \mod {2^n}})=K,也即全集msk=2N1\text{msk}=2^N-1的一个大小为KK的子集。

由于这是一个环排列,我们不妨令P0=0P_0=0。这样一来,Pi=j=1iSj,Sj=KP_i=\operatorname{\bigoplus}\limits_{j=1}^{i}S_j, |S_j|=K。结合上文可知,这是一个相邻元素二进制位恰相差KK位的格雷码问题。有K=1K=1时,满足条件的SjS_j恰有NN个,也就是NN位格雷码。

考虑推广。我们发现,如果按照类格雷码的方式生成排列,则所有的SjS_j应构成异或空间,其大小应当恰为2N2^N,并且由线性空间知识可以得到,该线性空间的(基的大小)应当恰为NN。这恰好符合NN位格雷码的构造。因此,只要满足上述条件,就一定能够生成符合题意的排列。

可以证明,除了2K(K=NN>1)2\mid K \lor (K=N \land N>1)以外,总是有满足条件的线性空间生成的。

下述解法的时间复杂度O((NK)+2N)\operatorname{O}\left(\dbinom{N}{K}+2^N\right)(更多…)

More
  • 2022年4月11日

AtCoder ARC 134 C – The Majority

如此ruzhi的一道题目竟花去两小时有余,比赛结束也没写出来,实在惭愧。

拿到题目,很快想到一种DP:令f(i,j,k)f(i, j, k)表示“考虑到第ii个盒子,第11种小球用去jj个,第2,3,,n2, 3, \dots, n种小球用去kk个”的方案数。容易转移

然后发现aia_i10910^9级别。同时题目告诉我们,相同类别小球无法区分,所以要是上述做法正确,为什么要分别给出a2,a3,a_2, a_3, \dots呢?如何在转移时确保每一种小球的使用次数正确?立刻想到正解O(ai)\mathrm{O}(a_i)基本无关。

(更多…)

More
  • 2022年1月30日

昨晚参与AtCoder ABC 236时认为G题似乎可做,直到看到数据范围才发现事情没有那么简单

由于最近学习离线数据结构,又见识过一道题意接近的题目,故想到整体二分,二分每一个节点第一次能恰好经过LL条边到达的时间,然后考虑DP求解。设计状态f(i,x)f(i, x)表示在该图上经过恰好ii次转移能否到达点xx。但很快发现每一次二分时均要重新在图上运行DP,时间复杂度无法承受。况且DP递推转移的次数LL高达10910^9,甚至不可能是线性的复杂度。

今天查看题解,发现有几个重要的,从未考虑过的trick:

  1. 既然要求能够经恰好LL次转移到达的最早的时间点,则我们将每条边的边权ww设为其加入图中的时间,则可以转化成恰有LL条边的最小瓶颈路
  2. 发现LL很大,所以考虑通过矩阵乘法加速递推,也即所谓倍增优化DP的一种。

(更多…)

More
  • 2022年1月24日