被这玩意卡了一上午——前天CSP-S模拟的T4需要用到这类问题的转移。为什么题解TMD是错的?

g(i,j,k)g(i,j,k)表示“每个位置有ii类元素可选,且序列中必须包含指定的jj类元素的,长度为kk的序列的个数”。形式化地讲,我们需要统计满足以下条件的序列的个数:p[1,k],apS (S=i);bTS (T=j),p[1,k],ap=b\forall p \in [1,k], a_p \in S\space(|S|=i); \forall b \in T \subseteq S\space(|T|=j), \exists p \in [1,k], a_p=b

通过容斥原理,我们可以计算出至少有0,1,2,,j0,1,2,\dots,jTT中的元素没有被包含在序列中的序列的个数,然后乘上容斥系数累加既是答案。也即: g(i,j,k)=x=0j(1)x(jx)(ix)kg(i,j,k)=\sum\limits_{x=0}^{j}(-1)^x\dbinom{j}{x}(i-x)^{k}。通俗地讲,我们在 jj 个元素中选择 xx 个,并强制使得它们不出现在序列中,其余元素任选。除去组合数的预处理时间,复杂度为O(j)\mathrm{O}(j)。参阅AtCoder ABC 194 F – Digits Paradise in Hexadecimal可以使用上述计算而非DP求解(虽然DP更加简洁直观)

(更多…)

More
  • 2022年3月4日

考虑一棵无根树的生成方式:需要决定一个好的顺序从而达到不重不漏地生成所有 nn 个点的无根树。

类似有向无环图的拓扑排序,可以定义一种无根树的“拓扑排序”:每一轮将当前的叶子删去。这样可以很容易算出直径。设删除的轮数为 rr,则当最终剩余一个孤点时,直径 d=2rd=2r,否则直径 d=2r1d=2r-1。为了生成无根树,我们考虑进行逆操作,在当前的树上加叶子。在此之前,为了不重不漏地对无根树进行表示,我们考虑如下的唯一表示方法:设 dis(x)\text{dis}(x) 为节点 xx 在添加叶子过程中第几轮被添加上树的。对于S={xdis(x)=const}S=\{x\mid \text{dis}(x)=\text{const}\}(也即同一层的节点),显然两棵有标号无根树同构但标号不同,当且仅当每个上述节点xx的叶子节点的标号集合不同。我们总是将 xx 标号小的先行添加为其儿子。这样就不会出现因“两棵树本身同构,子节点编号集合相同导致重复计数的问题”。同时,为了方便、准确地计算,我们严格规定,新加入的 kk 个叶子节点在新树上就是全部的叶子节点。也即在旧树上的所有叶子节点在新树上至少有一个儿子。 (更多…)

More
  • 2022年3月4日

有集合SSS=n|S|=n,则有TS2T=k=0n2k(nk)=3n\sum\limits_{T \subseteq S}2^{|T|}=\sum\limits_{k=0}^{n}2^k\dbinom{n}{k}=3^n。因此,若我们枚举集合,枚举集合的子集的子集做状压DP时,可以得到正确的复杂度O(3n)\mathrm{O}(3^n)而非错误的O(2n×2n)=O(4n)\mathrm{O}(2^n\times 2^n)=\mathrm{O}(4^n)。参见AtCoder ABC 187 F – Close Group

可以这样证明:考虑某个子集的子集PTSP \subseteq T \subseteq S,则SS中的每个元素有三种状态:aPa\in PaP,aTa \notin P, a \in TaT,aSa \notin T, a \in S。显然这样可以唯一表示SSTT以及PP,对应了所有子集的拆分方案。故原式成立。

More
  • 2022年2月24日

UPD 02.15:更新了区间操作部分。

约莫半月前练习专题时,发现几道解法多样的题目,其中需要运用一些中高级数据结构。苦于之前没有学习过平衡树,便挑选了一种易于上手、实现简单的平衡树学习,也即FHQ Treap。由11年国家队队员范浩强发明。

为书写方便,文章中可能将直接使用pp代指某节点的随机权值,val\text{val}代指节点关键码(即记录的数值),hh代指树高,siz\text{siz}代指子树大小,cnt\text{cnt}代指节点副本数(相同关键码的节点),rt\text{rt}存储根节点编号。

(更多…)

More
  • 2022年2月15日

广义斐波那契数列

定义:任何形如fi=fi1+fi2,f1=x,f2=yf_i=f_{i-1}+f_{i-2}, f_1=x,f_2=y的数列,称为广义斐波那契数列。

F1=F2=1F_1=F_2=1的斐波那契数列的通项公式

Fn=15[(1+52)n(152)n]F_n=\dfrac{1}{\sqrt{5}}\left[\left(\dfrac{1+\sqrt{5}}{2}\right)^n-\left(\dfrac{1-\sqrt{5}}{2}\right)^n\right]

证明方法多样,可惜我都不会知乎 – 斐波那契通项公式是怎样推导出来的?

下文中以FnF_n代指斐波那契数列的第nn项,fnf_n代表广义斐波那契数列的第nn项。

(更多…)

More
  • 2022年2月8日

看来脑瓜子还是不够灵活啊。以前看到“matching”、“bipartite”一类的标签,试图二分图时只晓得将题目中同一类的元素转化为点,将相对关系转化为边。但实际上,二分图也可以表示其他的二元逻辑关系,例如包含、排除。

例如[NOIP2010 提高组] 关押罪犯,一个经典做法是将罪犯转化为点集,将冲突关系符合一定条件的相互连边,然后二分答案作二分图匹配。(扩展域并查集实质上也是在贪心的基础上,运用“二分图匹配”的思想检查方案合法性……对吧?)

再例如AtCoder ABC 228 G – Digits on Grid,计数DP的转移也是在行、列元素分别作为左部、右部,以方格中的元素作为边权的二分图上进行的。

这道题则非常精妙——CF1634E – Fair Share。看到“要将所有元素分成两个相等的可重集”时,我认为应当用可重集作为二分图的左部和右部。但是这样一来,如何进行匹配呢?正解则是将数组ii包含元素aia_i逻辑关系转化为边——左部为各个数组,右部为相同的元素。可以发现,能够有解的充分必要条件是“每个元素均统共出现了偶数次”,同时“每个数组含有偶数个元素”,那么该图中每个节点的度数均为偶。记得小学奥数的一笔画问题么?它有一个更专业的术语,曰欧拉回路。事实上,一张无向图存在欧拉回路,当且仅当不存在度数为奇的节点。所以,我们直接求解一条欧拉回路,将从左部到右部遍历的边记作LL,从右部到左部遍历的边记作RR就是一个正确的解。

More
  • 2022年2月7日

给大家表演一个一场下青

CodeForces Round 770 Div.2 Problem D – Finding Zero

一道非常有意思的交互和构造题。

考虑能否固定两个数x,yx, y,通过它们的相对大小关系,确定其他数中是否存在00或最大值amaxa_{\text{max}}

经过一番推导,我们发现,设xyx \geq y的情况下,对于三元组(ai=x,aj=y,ak=z)(a_i=x, a_j=y, a_k=z),有g(i,j,k)=max(ai,aj,ak)min(ai,aj,ak)={zy,z>xxy,z[y,x]xz,z<yg(i, j, k)\newline =\max(a_i, a_j, a_k) – \min(a_i, a_j, a_k)= \begin{cases}z-y, & z > x \\ x-y, & z \in [y, x]\\ x-z, & z < y\end{cases}。所以,设x=6,y=4x=6, y=4以上式结果为因变量,zz为自变量,应有以下图像:

(更多…)

More
  • 2022年2月7日

DFS序列(dfn\mathrm{dfn}

在没有或存在一定限制条件的情况下,以DFS遍历经过的节点顺序构成的序列。记dfn(x)\mathrm{dfn}(x)为第一次访问该节点的时间戳,seq(t)\mathrm{seq}(t)为访问序为tt的节点。

容易发现,节点xx的子树节点的dfn\mathrm{dfn}一定是一段连续的区间。故我们可以使用数据结构方便地维护子树的信息。

(更多…)

More
  • 2022年2月4日

AtCoder ARC 134 C – The Majority

如此ruzhi的一道题目竟花去两小时有余,比赛结束也没写出来,实在惭愧。

拿到题目,很快想到一种DP:令f(i,j,k)f(i, j, k)表示“考虑到第ii个盒子,第11种小球用去jj个,第2,3,,n2, 3, \dots, n种小球用去kk个”的方案数。容易转移

然后发现aia_i10910^9级别。同时题目告诉我们,相同类别小球无法区分,所以要是上述做法正确,为什么要分别给出a2,a3,a_2, a_3, \dots呢?如何在转移时确保每一种小球的使用次数正确?立刻想到正解O(ai)\mathrm{O}(a_i)基本无关。

(更多…)

More
  • 2022年1月30日

昨晚参与AtCoder ABC 236时认为G题似乎可做,直到看到数据范围才发现事情没有那么简单

由于最近学习离线数据结构,又见识过一道题意接近的题目,故想到整体二分,二分每一个节点第一次能恰好经过LL条边到达的时间,然后考虑DP求解。设计状态f(i,x)f(i, x)表示在该图上经过恰好ii次转移能否到达点xx。但很快发现每一次二分时均要重新在图上运行DP,时间复杂度无法承受。况且DP递推转移的次数LL高达10910^9,甚至不可能是线性的复杂度。

今天查看题解,发现有几个重要的,从未考虑过的trick:

  1. 既然要求能够经恰好LL次转移到达的最早的时间点,则我们将每条边的边权ww设为其加入图中的时间,则可以转化成恰有LL条边的最小瓶颈路
  2. 发现LL很大,所以考虑通过矩阵乘法加速递推,也即所谓倍增优化DP的一种。

(更多…)

More
  • 2022年1月24日